Ta-V (Tantalum-Vanadium)

H. Okamoto

The Ta-V phase diagram in [Massalski2] was redrawn from the [1983Smi] assessment (dashed line in Fig. 1). One intermediate compound TaV_2 exists in this system. This compound may have a high-temperature polymorph, according to [1972Sav].

[2004Dan] calculated the Ta-V phase diagram (shown with solid lines in Fig. 1) by thermodynamic assessment, assuming there is no polymorphic transition in TaV_2 . Although both [1983Smi] and [2004Dan] are based on essentially the same phase boundary data, they appear substantially different. This is because [1983Smi] depended more on the phase boundary data whereas [2004Dan] calculated the phase diagram for thermodynamic consistency.

In addition, [2004Dan] proposed the Ta-V phase diagram by thermodynamic calculation including the polymorphic transformation in the TaV_2 phase. The phase diagram is shown in Fig. 2. In comparison with Fig. 1, the width of the TaV_2 phases is broader because only the [1972Sav] data were used for the basis of the thermodynamic modeling in Fig. 2.

Table 1 shows Ta-V crystal structure data for Fig. 2.

References

- **1972Sav:** E.M. Savitskii and J.V. Efimov, Superconducting Metallic Compounds and Their Alloys, *Monatsh. Chem.*, Vol 103, 1972, p 270-287 (in German)
- **1983Smi:** J.F. Smith and O.N. Carlson, The Ta-V (Tantalum-Vanadium) System, *Bull. Alloy Phase Diagrams*, Vol 4 (No 3), 1983, p 284-289
- 2004Dan: C.A. Danon and C. Servant, A Thermodynamic Evaluation of the Ta-V System, J. Alloys Compd., Vol 366, 2004, p 191-200

Fig. 1 Ta-V phase diagram with no polymorphs for TaV₂

Fig. 2 Ta-V phase diagram with polymorphs for TaV_2

 Table 1
 Ta-V crystal structure data

Phase	Composition(a), at.% V	Pearson symbol	Space group	Strukturbericht designation	Prototype
(Ta, V)	0-100	cI2	Im3m	A2	W
βTaV ₂	64–69	hP12	$P6_3/mmc$	<i>C</i> 14	MgZn ₂
αTaV_2	60–69	<i>cF</i> 24	$Fd\overline{3}m$	C15	Cu ₂ Mg
(a) For Fig. 2					