Ta-V (Tantalum-Vanadium)
 H. Okamoto

The Ta-V phase diagram in [Massalski2] was redrawn from the [1983Smi] assessment (dashed line in Fig. 1). One intermediate compound TaV_{2} exists in this system. This compound may have a high-temperature polymorph, according to [1972Sav].
[2004Dan] calculated the Ta-V phase diagram (shown with solid lines in Fig. 1) by thermodynamic assessment, assuming there is no polymorphic transition in TaV_{2}. Although both [1983Smi] and [2004Dan] are based on essentially the same phase boundary data, they appear substantially different. This is because [1983Smi] depended more on the phase boundary data whereas [2004Dan] calculated the phase diagram for thermodynamic consistency.

In addition, [2004Dan] proposed the $\mathrm{Ta}-\mathrm{V}$ phase diagram by thermodynamic calculation including the polymorphic transformation in the TaV_{2} phase. The phase diagram is
shown in Fig. 2. In comparison with Fig. 1, the width of the TaV_{2} phases is broader because only the [1972Sav] data were used for the basis of the thermodynamic modeling in Fig. 2.

Table 1 shows Ta-V crystal structure data for Fig. 2.

References

1972Sav: E.M. Savitskii and J.V. Efimov, Superconducting Metallic Compounds and Their Alloys, Monatsh. Chem., Vol 103, 1972, p 270-287 (in German)
1983Smi: J.F. Smith and O.N. Carlson, The Ta-V (TantalumVanadium) System, Bull. Alloy Phase Diagrams, Vol 4 (No 3), 1983, p 284-289
2004Dan: C.A. Danon and C. Servant, A Thermodynamic Evaluation of the Ta-V System, J. Alloys Compd., Vol 366, 2004, p 191-200

Fig. 1 Ta-V phase diagram with no polymorphs for TaV_{2}

Fig. 2 Ta-V phase diagram with polymorphs for TaV_{2}

Table 1 Ta-V crystal structure data

Phase	Composition(a), at. $\% ~ V$	Pearson symbol	Space group	Strukturbericht designation	Prototype
$(\mathrm{Ta}, \mathrm{V)}$	$0-100$	$c / 2$	$I m \overline{3} m$	$A 2$	W
$\beta \mathrm{TaV}_{2}$	$64-69$	$h P 12$	$P \sigma_{3} / m m c$	$C 14$	MgZn_{2}
$\alpha \mathrm{TaV}_{2}$	$60-69$	$c F 24$	$F d \overline{3} m$	$C 15$	$\mathrm{Cu}_{2} \mathrm{Mg}^{2}$
(a) For Fig. 2					

